Co-evolution of proteins with their interaction partners.

نویسندگان

  • C S Goh
  • A A Bogan
  • M Joachimiak
  • D Walther
  • F E Cohen
چکیده

The divergent evolution of proteins in cellular signaling pathways requires ligands and their receptors to co-evolve, creating new pathways when a new receptor is activated by a new ligand. However, information about the evolution of binding specificity in ligand-receptor systems is difficult to glean from sequences alone. We have used phosphoglycerate kinase (PGK), an enzyme that forms its active site between its two domains, to develop a standard for measuring the co-evolution of interacting proteins. The N-terminal and C-terminal domains of PGK form the active site at their interface and are covalently linked. Therefore, they must have co-evolved to preserve enzyme function. By building two phylogenetic trees from multiple sequence alignments of each of the two domains of PGK, we have calculated a correlation coefficient for the two trees that quantifies the co-evolution of the two domains. The correlation coefficient for the trees of the two domains of PGK is 0. 79, which establishes an upper bound for the co-evolution of a protein domain with its binding partner. The analysis is extended to ligands and their receptors, using the chemokines as a model. We show that the correlation between the chemokine ligand and receptor trees' distances is 0.57. The chemokine family of protein ligands and their G-protein coupled receptors have co-evolved so that each subgroup of chemokine ligands has a matching subgroup of chemokine receptors. The matching subfamilies of ligands and their receptors create a framework within which the ligands of orphan chemokine receptors can be more easily determined. This approach can be applied to a variety of ligand and receptor systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Gene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis

Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...

متن کامل

Gene phylogenies and protein-protein interactions: possible artifacts resulting from shared protein interaction partners.

The study of gene families critically depends on the correct reconstruction of gene genealogies, as for instance in the case of transcription factor genes like Hox genes and Dlx gene families. Proteins belonging to the same family are likely to share some of the same protein interaction partners and may thus face a similar selective environment. This common selective environment can induce co-e...

متن کامل

Identification of Semaphorin 5A Interacting Protein by Applying Apriori Knowledge and Peptide Complementarity Related to Protein Evolution and Structure

In the post-genomic era, various computational methods that predict protein-protein interactions at the genome level are available; however, each method has its own advantages and disadvantages, resulting in false predictions. Here we developed a unique integrated approach to identify interacting partner(s) of Semaphorin 5A (SEMA5A), beginning with seven proteins sharing similar ligand interact...

متن کامل

Exploiting the co-evolution of interacting proteins to discover interaction specificity.

Protein interactions are fundamental to the functioning of cells, and high throughput experimental and computational strategies are sought to map interactions. Predicting interaction specificity, such as matching members of a ligand family to specific members of a receptor family, is largely an unsolved problem. Here we show that by using evolutionary relationships within such families, it is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 299 2  شماره 

صفحات  -

تاریخ انتشار 2000